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SUMMARY

The flow-entraining capabilities of the Circulation Control Wing high-lift

system have recently been employed to provide an even stronger STOL potential

when synergistically combined with upper-surface-mounted engines. The

resulting configurations generate very high supercirculation lift in addition

to a vertical component of the pneumatically-deflected engine thrust. The

present paper will discuss a series of small-scale wind tunnel tests and full-

scale static thrust-deflection tests which provide a sufficient data base

confirming the concepts, and show means of improving their STOL and cruise

performance. These test results show thrust deflections of greater than 90 °

produced pneumatically by non-moving aerodynamic surfaces, and the ability to

maintain constant high lift while varying the propulsive force from high

thrust recovery required for short takeoff to high drag generation required

for short low-speed landings. Predicted takeoff and landing performance of a

postulated aircraft employing the combined concepts will show their excellent

STOL potential, and indicate the need for follow-on research.

INTRODUCTION

The Circulation Control (CC) airfoil has been under development since 1968

(see Ref. ]), with initial application intended for rotary wing vehicles. The

underlying principle of operation is shown in Figure I. Tangential blowing

over a round or near-round trailing edge produces a balance between

centrifugal force and sub-ambient pressure in the jet, causing the jet to

follov the curved surface, generate very high negative pressures in that

vicinity and thus strongly entrain the surrounding flowfield. The result is

boundary ]ayer entrainment, until the airfoil static pressures return to the

inviscid distribution at relatively low momentum coefficient (C. ). Beyond

that, additional blowing yields supercirculation and rest)ring lift greater

than that attainable by potential flow. Typical results of early airfoil

tests shown in Figure I (C1 > 6.5 for Cj_. < 0.25) revealed a very strong

potential for CC airfoils beyond application to rotary wing vehicles: fixed

wing STOL aircraft using CC airfoils for high lift generation at very low

power input. Experimental maximum lift exceeding that predicted by potential

flow theory (Fig. 2) has been generated; the minimum blowing required for a

given lift increment was far less than that required by traditional blown

flaps of similar flap chord. The possibility of obtaining this low required

momentum directly from compressor bleed ports of existing jet engines, and
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thus supplying excellent STOL capability to high performance aircraft, led to

a Navy program to develop the Circulation Control Wing (CCW). Numerous 2-D

and 3-D experimental investigations (Refs. 2 and 3 are typical) at David

Taylor Naval Ship R&D Center (DTNSRDC) lead to a proof-of-concept flight

demonstration program on a Navy A-6 (Ref. 4). The resulting significant STOL

capability was confirmed (Ref. 5 and 6), and led to a continuing program at

DTNSRDC to develop an operational CCW system for Navy STOL aircraft. This

Navy program and advanced developments in CCU configurations are discussed in

Reference 7, while an additional flight test program on a propeller-driven CCW

aircraft was conducted at West Virginia University (see Ref. 1 for data

reports). These two programs very successfully confirmed the CCW potential

for fixed wing STOL aircraft, with the capabilities either of operating at

very low speeds from short fields (or aircraft carriers) or operating with

greatly increased gross weights and lift-off/return payloads.

The flow-entrainment capabilities of the CC trailing edge have recently

been proven to provide an even stronger STOL potential when synergistically

combined with a powered-lift system such as upper surface blowing (USB).

Existing USB aircraft (Ref. 8, for example) entrain and deflect engine exhaust

by means of large mechanical flaps, and add both a vertical thrust component

CT sin (_+_j) and increased wing circulation lift (CL ) to the high-lift

capability (Fig. 3). However, CCW alone has virtually no lift component due

to vertical thrust recovery, and as Figure 3 shows, obtains most o£ its high

lift due to supercirculation, CL . Again, this is possible due to the very

high suction peaks at the trailing edge and the resulting flow entrainment and

negative pressures induced on the airfoil. From Fig. 3 analysis, it appeared

quite logical that a synergistic configuration of the two configurations could

produce an even more effective and versatile STOL aircraft. Thus, a

combination of CCW and USB (Fig. 4) was patented and experimentally confirmed

(Refs. 9 and I0) at DTNSRDC. The device exhibited not only very high lift

capability but also the ability to interchange drag and thrust at a fixed lift

value, and thus provide significant versatility for STOL aircraft on steep

approaches or in wave-off maneuvers.

Recent static investigations conducted by DTNSRDC at NASA Ames on the

0uiet Short-haul Research Aircraft (QSRA, Ref. II) have confirmed full-scale

static thrust turning greater than 90 °. A second series of tests conducted on

that aircraft developed improved CCW configurations that required even less

blowing to provide usable thrust turning angles. In addition, recent work

being conducted at Lockheed-Georgia Company has continued development of the

CCW/USB data base and configurations, with specific attention being paid to

the cruise mode. With the intention of reducing scrubbing losses due to USB

exhaust immersing the wing upper surface in cruise, the Over-The-Wing (OTW)

concept previously investigated by NASA (Ref. 12) has been re-evaluated and

combined with CCW.

The present paper will elaborate on the above-mentioned developments of

the circulation control wing concept integrated with various forms of powered-

lift systems. It will provide further details on these recently conducted

powered-lift research efforts, both model- and full-scale, and evaluate

calculated STOL performance improvements when applied to an existing

airframe/engine combination. Primary discussion will center on two recently
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conducted series of investigations: a full-scale static development of
CC_/USBon the NASA QSRA STOL aircraft, and smaller-scale model tests of
CC_/USBand CCW/OTW. A summary of early experimental confirmation of the
CCW/USBwill precede these.

SYMBOLS

Values are given in SI and U.S. Customary Units, but measurementsand
calculations were madein the latter.
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blowing jet slot span, cm (in.)

airfoil chord, cm (in.)

wing or aircraft drag coefficient (includes horizontal thrust

component if a vectored-thrust configuration)

airfoil or wing (aircraft) lift coefficient

circulation lift coefficient

thrust coefficient, T/qS

blowing momentum coefficient, _Vj/qS

blowing jet slot height, cm (in.)

engine exhaust nozzle height, cm (in.)

blowing jet Mach number

engine exhaust Mach number

blowing jet mass efflux, kg/sec (slugs/sec)

engine fan speed, rpm

blowing plenum total pressure, N/m 2 (ib/ft 2)

freestream dynamic pressure, N/m 2 (ib/ft 2)

CC trailing _dge _adius, cm (in.)
wing area, m (ft)

calibrated engine thrust, N(ib)

airfoil thickness-to-chord ratio

velocity along approach flight path, m/sec (ft/sec)

blowing jet velocity, m/sec (ft/sec)

engine exhaust nozzle width, cm (in.)

angle of attack, deg.

geometric angle of attack, uncorrected for tunnel interference

effects, deg.

flap deflection, deg.

Upper Surface Blowing flap deflection, deg.

jet or thrust deflection angle, deg. down from aft horizontal axis

SMALL-SCALE CONFIRMATION OF CCW/USB

The original concept of a CCW/USB combination occurred when the author was

at DTNSRDC following the successful A-6/CCW flight test. An initial bench

test was conducted on a semi-span CCW model joined with a turbofan engine

simulator with a D-nozzle. Flow visualization indicated very large engine

thrust deflection angles, and led to the mounting of the model on a tunnel

balance frame for static confirmation. Figures 5 and 6 from Ref. 6 present
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the results in terms of static jet turning angle (8) as influenced by CCW

blowing pressure and engine thrust level. Large turning angles of 165 ° are

confirmed, as is increased turning corresponding to increased CCW momentum.

Two additional trends are also noted. Reduced turning occurs at higher thrust

levels because of the additional energy in the engine exhaust that must be

entrained by CCU. At constant higher thrust levels, peaks occur beyond which

additional blowing yields reduced turning. This could very well be due to a

characteristic previously noted for CCU alone (Ref. 13): higher blowing jet

velocities, smaller turning radii and increased slot heights can reduce jet

turning effectiveness. Figure 6 depicts the efficiency of this form of thrust

deflection, with greater than 95 percent of the thrust and blowing momentum

being recovered up through 55 degrees of thrust deflection. It also confirms

a trend previously unseen in static USB data: thrust deflection of greater

than 90 °, as well as the generation of both drag and thrust recovery from the

same system.

Wind-on investigations, conducted on the same model in the DTNSRDC

8xlO-ft. subsonic tunnel, confirm the lift augmentation possible with this

system, in two modes of operation (Figure 7). These data, all taken at zero

degrees geometric incidence, are for inboard blowing alone ("CC/USB only,"

solid symbols) and for CCW/USB combined with outboard blowing of a CCW segment

("CC_+CC/USB," open symbols). Inboard blowing alone confirms lift increase

with both blowing and thrust increase, due to the increased exhaust deflection

and entrained flow. However, the addition of outboard blowing of CCW yields

additional lift at the same total C_ . The drag polars confirm the

versatility of the system, allowing at constant CL the generation of either

large drag values (for equilibrium approach) or large thrust values (for

takeoff or climbout) merely by adjustment of thrust or blowing coefficient.

Considerably more developmental work and configuration improvement was

conducted at DTNSRDC on this concept, and is reported in detail in References

6, 9, I0, and 14.

LARGE-SCALE QSRA STATIC TESTS - PHASE I

An unknown in the above investigation was the effect of a real mixed-flow

turbofan engine with hot exhaust, as well as the effects of scaling to full

size. To address these issues, a joint DTNSRDC/NASA Ames full-scale static

test was conducted, and is reported in detail in Reference II. This Phase I

test is summarized briefly here to provide a reference data base for the

discussion which will follow on a second test series conducted to improve the

CCW/USB configuration.

Figure 8 shows the NASA Quiet Short-Haul Research Aircraft (OSRA), a

flight-proven Upper Surface Blowing powered-lift STOL aircraft, mounted on

static thrust stands during the Phase I static tests conducted at NASA Ames

Research Center. A CCW configuration can be seen mounted behind the inboard

left engine only. Blowing was supplied using mass flow from standard aircraft

ground starter carts, connected to the configuration as shown in Figure 9.

The trailing edge radius was 3.62 percent of the average wing chord of the

blown wing section, and the blowing slot height was set statically at 0.04

inch. Tufts in Figure 9 confirm the greater-than-90-degree jet turning
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produced by the round trailing edge. These curving tufts contrast with a

single tuft outboard of the blown section which plots the unaffected exhaust

flow exiting aft nearly parallel to the wing upper surface. Static thrust

turning resolved from the measured horizontal and vertical static forces is

plotted in Figure I0, where trends very similar to the small-scale data of

Figure 5 are noted. Actually, the apparently lower thrust turning angles of

the full scale test are due solely to the fact that the mass flow output from

the ground starter carts was insufficient to match the CCW blowing levels of

Figure 5. A comparison between full-scale data and model data from Reference

14, adjusted to match the geometry of the 0SRA arrangement, is shown in Figure

II. The agreement was quite good, considering some slight variation in

parameters that were not exactly duplicated in the full-scale test (see Ref.

11). The conclusions drawn were that the full-scale hot configuration behaved

in a very similar manner to the small-scale cold exhaust tests, jet

deflections varied from 43 to 97 degrees at the higher blowing rate, and that

additional full-scale jet deflections would result if greater CCW momentum

were available. An additional item of interest is shown in Figure 12, where

the Figure I0 data are nearly linearized when plotted against Mach number in

the engine exhaust measured at the CCU jet slot location, instead of against

calibrated engine thrust at the exhaust nozzle.

LARGE-SCALE 0SRA STATIC TESTS - PHASE II

The above Phase I investigations revealed some refinements and

improvements needed with the CCW/USB system, and suggested means to improve

overall system performance and simplicity. Thus, a follow-on Phase II full-

scale static investigation was conducted on the OSRA, the results of which

will be discussed herein, and compared with the initial tests. Greater detail

is found in Reference 15. The objectives of this Phase II series of tests

included:

refinement of CCU trailing edge shape

drag and determine if configurations

could improve performance,

and thickness to reduce cruise

other than large circular ones

• increase in blown system span and limitation of losses at the outboard

end in order to further entrain more of the engine exhaust sheet,

• variation in blowing slot height to investigate additional entrainment,
and

• increase in blowing slot momentum to investigate greater thrust

deflection.

Design, Installation and Test Procedure

To investigate the above, two reduced-thickness CCW trailing edges of

increased span and different structural arrangement were designed by DTNSRDC

and constructed by Micro Craft Inc. of Tullahoma, Tennessee. These are shown

in Figure 13 compared to the Phase I fully-circular large radius (r = .0362
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chord) trailing edge. The 5-inch diameter 180-degree arc section was intended
to reduce trailing edge thickness of the circular CCWdevice in blowing-off
cruise by reducing the radius. The 10-inch diameter 90-degree arc section was
intended to do the same, while maintaining the original larger radius of the
Phase I configuration. This assumed that a maximum turning angle of 100
degrees from aft horizontal would be satisfactory from a STOLperformance
standpoint (if thrust reversing were not required). The span of the new
configurations was increased to capture the larger spanwise spreading of the
engine exhaust that had been exhibited in Phase I, and an outboard fence was
installed to limit that spreading to the span of the blown section.
Furthermore, variable slot height capability was provided. The five new
configurations investigated during Phase II are further comparedto the Phase
I trailing edge below:

Phase Config. Dia., Arc, Fence Span, Slot Ht,

in_____t,deg. in. in.

I __

II 1

II 2

II 3

II 4

II 5

i0.0

5.0

260 Off 75.0 0.040-0.067

90 _ 88.0 0.070

I 0.035
180

0.070

Figures 14 and 15 show closeups of the 90-degree arc and the smaller-

radius 180-degree circular arc as installed on the left inboard flap of the

QSRA. Trailing edge thickness at the blowing slot location is the same for

both, yet the radius of the 90-degree arc is twice as large. This eases the

more difficult task for the CCW jet of entraining the high energy of the

engine exhaust around a small radius, a phenomenon experienced in several

aspects of previous CCW flow investigations (Ref. 13).

Figure 16 shows installation of the removable flow fence located 13"

outboard of the separation line between the inboard and outboard mechanical

USB flaps, which is where the Phase I trailing edge terminated. This figure

also shows the blowing slot, pressure and temperature probes for the engine

exhaust, support rod to restrict trailing edge upward deflection under load,

and two of three air supply lines connected to the blowing plenum. These

lines were connected to three conventional ground air-starter carts to supply

the CCW trailing edge blowing; variation in blowing rate was simply by

attaching or disconnecting another cart to the plenum. Slot height was pre-

set at the values shown in the above chart, and then reset and measured when

pressure and temperature had stabilized at each test condition. Since there

were no flow meters in the starter cart system, the blowing mass flow (_j) and

jet velocity (Vj) were calculated using the measured temperatures, pressures,
and slot areas in the isentropic equations, just as they were in Phase I (see

Ref. II).

For relative comparison, the 90-degree arc configuration is shown on the

QSRA in relation to the undeflected USB mechanical flap behind the outboard

engine and the outboard double-slotted flap in Figure 17. On a production

aircraft, the trailing edge of the CCW device would align with the

conventional trailing edge, not be displaced aft of it as shown here. The
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large size of the mechanical devices when deflected is hinted at by the size
of the flap mounting brackets and fairings below the wing. A goal of this
program was to eliminate the drag and complexity of these mechanismsas
required for mechanical high-lift systems.

Results and Discussion, Phase II

Data from References 9, i0, Ii and 14 imply that CCU/USBthrust deflection
is primarily a function of engine thrust level and CCUjet characteristics
(mainly jet total pressure and momentum), while Reference 13 notes that CCW
radius and slot height can strongly influence jet turning, especially at
higher blowing pressures. Results of the PhaseI test had confirmed someof
the above relationships, as did the Phase II results. However, additional
trends (such as effects of slot height and blowing span variations) were
established during Phase II, and a number of performance improvements were
seen.

Thrust Deflection and Recovery - Typical thrust deflection results from Phase

II are shown in Figures 18 and 19, which represent two extremes in

performance: the excellent turning produced by the larger radius 90-degree

arc with a smaller slot height (Config. 3) compared to the considerably

reduced turning of the smaller-radius 180-degree circular configuration with a

larger slot height (Config. 5). At a typical blowing momentum per unit span

of approximately 20 lb/ft at 75%N 1 engine power setting, the 90-degree arc

produced 55 degrees of thrust deflection compared to about 37 degrees for the

smaller radius 180-degree configuration. Note also for this latter

configuration the much higher degree of resultant thrust loss per degree of

turning at constant %N 1 (i.e., the more negative slopes of the lines marked

constant N1) , a factor which could prove detrimental in climbout or go-around
for a STOL aircraft.

An evaluation of the effect of reducing slot height can be made by

comparison of Figure 20 with 19, both being for the small-radius 180-degree

circular arc configuration. Here, for the same blowing momentum and power

setting (say 20 Ib/ft and 75%N1) , the smaller slot height yields greater

turning compared to the larger slot height (47 degrees versus 37 degrees).

This is because, at constant jet momentum, the reduced slot height's exit area

must be balanced by increased jet velocity, which (up to certain higher limits

on pressure ratio across the slot) produces greater flow entrainment and
thrust deflection.

Whereas Figure 19 for the larger slot height confirms the additional

thrust turning produced by additional momentum, that test objective was not

met for the smaller slot heights. In Figures 18 and 20, the upper two sets of

data (higher momenta) represent 2 and 3 ground start carts supplying air to

the CCW. These should show the effect of a 50% increase in momentum, yet show

little, if any, change in thrust turning. This was due to the fact that

higher plenum pressure was required to produce a given momentum with a smaller

exit area, and thus a limiting back pressure was reached (approximately 32-34

psig), beyond which the starter carts could produce no additional mass flow.

Thus evaluation of the effect of jet momentum greater than about 20 lb/ft at
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smaller slot height was not conducted and will require an alternative air

supply source to complete.

For the above results, a resultant thrust vector was calculated for each

test condition as the vector sum of static forces measured in the

horizontal/vertical planes. This vector acted on the aircraft at the thrust

deflection angle e, measured positive downward from the aft horizontal. (No

lateral forces are included due to lack of balance components in that

direction.) As noted during Phase I (Ref. II) and previous USB

investigations, there is usually some loss in resultant thrust as jet turning

increases, due to jet spreading, mixing and viscous losses. In Phase I, at

maximum installed power, thrust recovery (resultant/installed thrust) varied

from 98% with blowing off to 89% with maximum blowing momentum of 34.3 ib/ft.

(Since blowing air came from the external ground starter carts, these recovery

values do not include any thrust loss due to engine bleed, which would have to

be considered in actual application). For comparison, Figures 21 and 22

present resultant thrust as functions of installed thrust, power setting and

blowing rate for both the large- and small-radius CCW trailing edges and a

0.035-inch slot height. Thrust recovery for the lO-inch diameter 90 ° arc

(Fig. 21) is nearly the same as for the Phase I baseline configuration, but

the smaller 5-inch circular arc shows considerably less recovery with blowing,

down to about 83% at 20.7 ib/ft of blowing at maximum power setting. In

general, for similar thrust deflection values, resultant thrust recovery is

less with either smaller trailing edge radii or larger jet slot heights.

These same trends were noted from the constant N 1 lines of Figures 18, 19, and

20. These trends produce mixed implications in STOL operation, where thrust

loss is advantageous on approach along steep glide slopes, but is definitely

detrimental on takeoff, climbout or waveoffs (go-arounds).

A typical resolution of measured horizontal and vertical forces and their

variation with blowing is shown in Figure 23. Here the versatility of the

CCU/USB concept is evident: constant vertical force may be maintained while

horizontal force is varied pneumatically. Conversely, constant horizontal

force may be held while lift is increased by blowing, again without incidence

or mechanical changes. The payoff for STOL aircraft, when the aerodynamic

forces are added to these static values, will become more evident in a later

section on STOL performance.

Configuration Comparison- A comparison of the effectiveness of the full-scale

configurations tested in Phase II with the Phase I baseline is shown in

Figures 24 and 25 for values of constant resultant thrust. Resultant thrust

levels of 2500 and 5000 pounds represent approximately half- and full-power

settings of the engine as installed in this test setup. In Figure 24, blowing

momentum is plotted per unit span to offset the effect of additional momentum

corresponding to increased slot length. Blowing off, the geometric camber of

the Phase I circular configuration increased thrust deflection by lO-11

degrees over the Phase II configurations as well as the basic USB undeflected

flap. The 90-degree arc (configuration 3) produced only 1 to 2 degrees

incremental turning with blowing off. Large thrust deflection in cruise could

prove detrimental because of horizontal thrust loss.
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With blowing applied, a number of performance increases were noted. The

increased span and endplate of the Phase II lO-in.-diameter configuration 3

nearly doubled the incremental thrust turning due to blowing when compared to

the same radius configuration of Phase I. The flow fence alone produced a 2-

to 4-degree increase in thrust deflection (Configuration 2 vs. i). A doubling

of the trailing edge radius (Configuration 3 vs. 4) increased thrust turning

by 8 to I0 deg, but produced no difference in the blowing-off thrust

deflection due to geometric camber. Reducing the slot height by 50 percent

(Configuration 3 vs. 2, or 4 vs. 5) added 8 to 15 deg of thrust deflection at

the same momentum. These data extend to CCW/USB the Reference 13 findings

that flow entrainment over curved surfaces with blowing becomes more difficult

with smaller radii, larger slot heights, and higher entrained flow velocity

(i.e., greater engine thrust).

Figure 25 supplies useful design data for STOL application of this system,

as it provides blowing momentum required for a given thrust deflection as a

percentage of installed engine thrust. Since turbofan engine thrust loss can

become appreciable when increased bleed is taken from the core, it is

desirable to keep the bleed momentum as low as possible for takeoff and

climbout. From this viewpoint, it is seen that for a typical thrust

deflection of 40 degrees, the 90-degree arc (Config. 3) requires bleed

momentum equal to 1.7 percent of the installed thrust, at full power setting.

The Phase I configuration required about 4.6 percent to obtain the same

turning, while the smaller diameter 180 ° arc with larger slot height does not

appear able to reach that value at all, probably due to the high exhaust

energy level and small turning radius. For STOL approaches, where large

thrust deflections are desired, the 90-degree arc at half-power setting can

produce 60 degrees deflection using 5% of engine thrust as blowing momentum, a

value which might typically be bled from the core of the engine; higher values

become progressively more difficult to obtain. At the same half-power setting

and 5% bleed, the smaller radius 180-degree arc produced 53 degrees jet

deflection while the Phase I arc produced 48 degrees. The smaller radius was

not as greatly affected by high exhaust velocity at this reduced power

setting.

The above results indicate that the most effective trailing edge

configuration from a thrust-turning standpoint was found to be the 10-in.-

diameter 90-degree circular arc. It provided the same thrust turning as the

other configurations while using considerably less momentum, or produced

greater thrust turning at the same momentum. Exact comparison with the 10-

in.-diameter circular cylinder of Phase I was not possible due to span and

other geometry differences, but indications were that additional physical arc

greater than 90 degrees performed little useful function. For the range of

blowing investigated, a summary performance comparison can best be seen in the

following chart of increase in jet deflection due to blowing:
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Configuration Tresultant, lb. 48, deg.

Baseline, Ph.I 2500 26.2

Config. 3, Ph. II 2500 46.0

Baseline, Ph. I 5000 13.8

Config. 3, Ph. II 5000 29.5

Excluding the effects of slightly smaller slot height and better blowing slot

lip alignment of the 90-degree circular arc with hj = 0.035 inch and larger

span, that configuration roughly doubled the jet deflection due to blowing of

the baseline Phase I configuration. It thus appears that one of the most

effective means of increasing jet deflection is to ensure that the entire

spread exhaust from the USB engine is captured by the CCW jet. With that

provision, very effective pneumatic thrust turning can thus be produced by a

much thinner partial arc trailing edge shape, which produces almost no thrust

loss in cruise due to camber-induced deflection, and should have considerably

reduced base drag. Thus, the performance improvements sought by the Phase II

investigation were achieved by configuration improvement, and the new

configurations developed should yield not only improved STOL performance, but

increased cruise efficiency as well.

STOL APPLICATION AND PREDICTED PERFORMANCE

In order to investigate possible payoffs of the above thrust-vectoring and

lift-augmenting technology, a STOL aircraft was postulated, employing the

combination of CCW outboard and CCW/USB inboard (Ref. 9). The basic airframe

chosen was the Lockheed S-3A Viking, with its existing TF-34 high-bypass

turbofan engines retained but re-mounted on the wing in the USB arrangement

shown in Figure 26. As the intended mission for this proposed aircraft was

STOL operation from small-deck carriers, the original S-3A aspect ratio of

7.73 was reduced to 6.0 to allow flight deck clearance. The CCW/USB data of

Figure 7 was used, but adjusted (see Ref. 9) to account for the aspect ratio

difference and blowing-off characteristics of the basic S-3. The lift curves

of Figure 27 resulted. (The standard S-3A still retains its 7.73 aspect

ratio). Since no engine bleed data or thrust turning results were available

for this configuration, it was assumed that a C_ of 0.10 would be obtainable
(perhaps from fan rather than core bleed) andthat a thrust deflection angle
of 38 ° was attainable at all thrust settings. A round trailing edge CCW/USB

configuration similar to that of the above Phase I test was assumed. In light

of the Phase II tests results above, all of these conditions seem to be

conservative, and thus the following performance predictions should represent

at least a lower level of attainable performance for this type of

configuration.
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Takeoff Performance

All STOL performance discussed below is based on sea level tropical day

(90°F) conditions with standard S-3/TF-34 maximum two-engine installed thrust

of 13,020 ib total, which include losses due to thrust droop, ram drag at 60

kts, and bleed. Since high thrust/welght ratio can be an important benefit in

achieving short takeoff ground rolls, it is important to note that for the S-

3A takeoff gross weight range (35,000-40,00.0 ib), the effective thrust/weight

ratio is a relatively low 0.33 - 0.38, as Fig. 28 shows.

For this weight range, conventional S-3A (CTOL) lift-off speeds of 115

knots can be reduced to 60-65 knots by CCW/USB. The implications on reduced

requirements for catapult equipment (if, in fact, any is required at all) are

significant. The resulting non-catapulted takeoff distances are compared in

Fig. 28 for wind-over-deck (WOD) velocities of 0 and 20 knots. Here, the

takeoff procedure for the proposed aircraft is to accelerate at maximum thrust

(bleed off and no thrust deflection) until the rotation speed is reached. At

rotation, blowing is initiated and instantaneous thrust deflection and lift

augmentation occur. This procedure was successfully and comfortably used by

Grumman test pilots with the A-6/CCW (Ref. 5). For a 20 knot WOD,

conventional S-3 takeoff rolls of 1,175 - 1,650 ft will be reduced to 200 -

325 ft. Takeoff distances of 450 - 650 ft are possible if no wind over deck

is available.

Landing Performance

Using the conservative assumptions of only 38 ° thrust deflection and 0. I0

blowing coefficient, Fig. 29 compares equilibrium approach speeds at an

incidence of 9° or I0° on a 4° glide slope. Since no flare is used in Navy

approaches, this glide slope is constant and forces must be in equilibrium

along that flight path to avoid acceleration down it. This requires

additional drag generation for USB aircraft since high lift is achieved at

high thrust settings which normally result in high thrust recovery. This

thrust recovery is offset for the CCW + CCW/USB aircraft by the induced drag

generated by CCW. Thus all approaches are made along the CD = 0 axis (see

Fig. 7) but at the appropriate approach incidence of I0°- For a landing

weight of 30,000 - 35,000 lbs, the approach speed is reduced from 95 to 55

knots by the CCW + CCW/USB. For a fixed bleed rate from the engines,

available C_ will not remain constant, but will increase as weight and
associated speed decrease. Thus Figure 29 also shows approach speeds at a

fixed bleed momentum of 1130 lbs. total, which is felt to be attainable for

this configuration. Approach speeds below 50 kts are now possible. These

very low approach speeds plus any wind over deck will reduce touchdown speeds,

kinetic energy to be dissipated, and landing ground rolls by as much as 70

percent. They also imply the capability for an improved steeper glide slope

to minimize flight through carrier-induced turbulence, increased pilot

visibility from approach at lower incidence, and increased pilot reaction time

due to lower closure rates, all of which contribute to safer carrier

operations and thus reduced accident rates.

The above STOL performance predictions indicate significant potential for

aircraft operation from small air-capable ships, plus a number of operational
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benefits for land-based aircraft as well, resulting from the incorporation of

CCWIUSB.

SMALL-SCALE ADVANCED CONFIGURATION DEVELOPMENT

While the above developments primarily addressed the high-lift pneumatic

STOL configurations, an obvious outgrowth which cannot be overlooked is the

associated cruise performance. The immersion of the wing upper surface and

trailing edge in the engine exhaust, which is responsible for the thrust-

induced lift generated by the CCW/USB configuration, also produces thrust loss

due to exhaust scrubbing on these surfaces in the cruise mode. With the

intention of reducing these losses without detriment to STOL thrust

deflection, the Over-the-Wing (OTW) concept previously investigated by NASA

(References 12 and 16) is being re-evaluated and refined at the Lockheed-

Georgia Company. As shown schematically in Figure 30, the USB engine is

relocated in the OTW configuration onto a pylon above the wing. Reference 16

confirms that this will eliminate the scrubbing drag and, in fact, if the

undeflected exhaust nozzle is properly located, can reduce the induced drag in

cruise by inducing an upwash on the wing. Recent research conducted at

Lockheed-Georgia has focused on developing the high-lift OTW configuration by

replacing the mechanical flap system with CCW configurations, and increasing

the system's ability to deflect OTW thrust by improving the CCW turning

surface geometry.

A generic powered-lift model has been used in these investigations; it is

shown in Fig. 31 installed in the Lockheed 30x43-inch Model Test Facility,

spanning the 30-inch width of the tunnel in a "quasi 2-D" mode with a chord-

to-tunnel height ratio of 5.4. Force data from the floor balance, as well as

pressure data from model static taps and a wake rake, were recorded. The

model wing could be retracted through the tunnel floor to allow variation in

aspect ratio. The same model is shown in Figure 32 as a semi-span aspect

ratio 5.5 configuration. The OTW engine as shown was mounted on a wing pylon

and employed a nozzle hood to deflect thrust onto the wing surface instead of

the mechanical exhaust nozzle shown in the lower portion of Figure 30. For

system comparison, the engine was also located on the wing surface and a D-

nozzle installed to represent a USB configuration.

Test Results and Discussion

Figure 33 compares lift results for USB and OTW engine arrangements using

both CCW and a single-slotted flap to entrain and deflect the thrust. In this

"quasi 2-D" mode, as well as in the AR = 5.5 semi-span mode, the wing

reference area is considerably larger than that affected by the engine thrust

deflection, and thus the thrust coefficients evaluated (CT = T/qS) are

typically lower than would be expected of a STOL aircraft with proportional

sizing of wing and engine. For the same trailing edge type, the following

trends were noted:

With the single-slotted mechanical flap, OTW yields greater induced

lift and thrust recovery than does USB.
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With moderate thrust and blowing, there is relatively little
difference between OTWand USBwhen combined with CCW. This confirms
that CCWis able to entrain the thrust from the OTW engine nacelle

which is further above the turning surface than it is for USB. It

does however require a nozzle hood device, but the implication is that

the two concepts are then equivalent in STOL while OTW should

demonstrate reduced thrust loss in cruise.

Cross-plane velocity vectors obtained from 7-hole-probe rake surveys of

the wing wake show the effect of the trailing edge high lift device on OTW

performance in Figure 34. Clearly, the CCW blowing spreads, deflects and

diffuses the exhaust plume, thus enhancing the lift by as much as 75 percent

over the OTW/mechanical flap at low incidence, as shown in Figure 33. The

engine downwash directly behind the wing is greatly reduced, thus reducing the

possibilities of tail stall due to downwash immersion, ground fountain effects

in STOL, and large nose-down pitching moments.

In order to generate additional blowing-off lift due to geometric camber,

to provide a control device on thrust deflection with blowing, and to provide

increased thrust recovery, the round CCW trailing edge used above was

converted to a CCW flaplet by addition of an 11.4% plain flap, as shown in

Figure 35. This flaplet had straight upper and lower surfaces making 14-

degree angles with the chord line, and pivoted about its center on the

chordline directly below the blowing slot. The radius exposed as the flap

deflected was the same as the original CCW round trailing edge (.031c). A

previous series of quasi 2-D investigations at various flaplet angles led to

the choice of this 60-degree flap deflection, with the emphasis being on lift

augmentation combined with engine and CCW jet thrust recovery.

Resulting lift generated at two CCW blowing levels and two engine thrust

levels, as well as data for the plain CCU wing without the engine installed,

are shown in Figure 35. An interesting comparison at these lower thrust

levels shows that much greater lift augmentation per unit momentum input

results from CCW blowing than from thrust deflection. As an example, at C_ =

0.46, CL is 2.8 to 3.0 higher than for C_ = O, while for CT = 0.46, C L is

only 0.25 to 0.40 more than for CT = 0 ("No engine").

The above data were used to extrapolate the CCW/OTW drag polars in Figure

36 to a typical CT of 2.0. At this thrust level, and over a typical CCW

blowing range of "daC_r=g0 to 0.4, almost the entire envelope of drag polars liesin the negative (positive thrust recovery) region. This is quite

desirable for short takeoff, climbout or waveoff, but it can produce a serious

problem during a STOL approach: the aircraft cannot generate enough drag to

offset the higher engine power level, and thus equilibrium slow-speed approach

down a steep glide slope becomes quite difficult, if not impossible.

To generate this required drag, a means of increasing thrust deflection to

higher angles is necessary such that little thrust is recovered under approach

conditions. The round CCW trailing edge provides a means to do this, as shown

by the data from Reference 14 plotted in Figures 35 and 36. As an example, at

a CT = 1.2 and CL = 3.5, drag coefficient is converted from -0.50 for the 60-

degree flaplet to +0.75 for the round CCW.
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Although the aspect ratio (AR=4) and the engine arrangement (CCW/USB) of

Reference 14 are not exactly comparable with the current model, the similar CT

and C_ values serve to illustrate the trend: namely, additional turning
produced by the round CCW trailing edge can reduce the thrust recovery and

increase total drag. Thus, the desired compromise configuration to provide

excellent operation in all regions of the STOL flight envelope is one which

generates high lift augmentation in all configurations, but at the same time

simply and effectively allows high thrust recovery on takeoff and climbout and

high drag generation on approach. The further constraint of an efficient

clean aircraft cruise configuration is, of course, mandatory.

To pursue these objectives, the CCV Dual Radius configuration developed in

References 7 and 17 was combined with OTW. Here the flat upper surface of the

short-chord flaplet of Figure 35 was converted to a large secondary radius to

yield an additional 36 degrees of turning surface for the CCV jet and engine

thrust. Figure 37 shows resulting lift and drag. The dual radius CCW flap

alone, when deflected 90 °, generates similar lift and much higher drag than

the 60 ° flaplet OTW configuration at CT = 3.0. However, when combined with

OTW, the dual radius CCW flap increases CL by as much as 2.5, yet allows

thrust to vary from CD = -2.0 to + 1.2 merely by varying C_ and resulting

thrust deflection. Furthermore, tests of the undeflected dual radius CCW

alone in a cruise configuration showed drag reduction of 14 percent compared

to the undeflected flaplet and 40 percent that of the round CCU (r = .031c).

CONCLUSIONS

The above static full-scale and wind-on model-scale results have provided

valuable confirmation that CCW can be effectively combined with an above-wing-

mounted (USB or OTU) engine system to yield pneumatic thrust deflection and

associated lift augmentation. The more important conclusions are:

CCW flow entrainment can yield pneumatic thrust deflections of 90

degrees or greater from USB-mounted engines, and resulting model-scale

maximum lift coefficients of 8-9.

Improved CCW/USB configurations employing thinner, less-cambered

partial arc trailing edges with smaller slot heights and increased

blowing spans have yielded improved STOL potential.

Pneumatic control of lift augmentation and horizontal thrust recovery

increases STOL versatility, allowing simple conversion from high drag

to high thrust recovery while maintaining a constant lift force.

Variation of the combined aerodynamic/propulsive forces is thus seen to

be possible without change in angle of attack or deflection/retraction

of any external moving parts.

Advanced versions of CCW and pneumatic thrust deflection can simplify

powered-lift systems and improve cruise efficiency by eliminating

viscous scrubbing losses. CCW/OTW configurations offer STOL

performance similar to CCV/USB, as well as improvements in cruise drag
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and efficiency. Both systems make possible few- or no-moving-part
powered-lift systems capable of excellent STOLperformance.

Small- and large-scale wind tunnel investigations are continuing at
Lockheed-Georgia to further develop this technology for useful STOL
application. The ultimate test, however, will be a full-scale powered-lift
flight program, such as that recommendedby Reference 18, where it is pro-
posed to convert the QSRAto a CCW/USBconfiguration by relatively simple
modification to the flaps. This will allow a logical continuation of the
above static ground tests and in-flight verification of the indicated STOL
potential of these pneumatic thrust-deflecting lift-augmenting concepts.
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Figure 9. Elowing-On Static Thrust Deflection at the CCW Trailing Edge, 
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CRUlSE TAKE-OFF AND LANDING

Figure 30. Over-the-Wing (OTW) Blowing Concept Using a Mechanical Flap
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Figure 31. Quasi 2-D CCW/OTW Model in the Lockheed-GA 30-Xh3-Inch Model Test 
Facility 
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Figure  32. Semi-span CCW/OTW Aspect-Ratio = 5.5 Model 
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Figure 36. Comparative Drag Polars for CCW/OTW and CCW/USB Semi-Span Models
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Figure 37. Effect of CCU Configuration on Lift and Drag due to Blowing and
Thrust Deflection
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